Dissecting the Stanley partition function

نویسندگان

  • Alexander Berkovich
  • Frank G. Garvan
چکیده

Let p(n) denote the number of unrestricted partitions of n. For i = 0, 2, let pi(n) denote the number of partitions π of n such that O(π)−O(π) ≡ i (mod 4). Here O(π) denotes the number of odd parts of the partition π and π is the conjugate of π. R. Stanley [13], [14] derived an infinite product representation for the generating function of p0(n)− p2(n). Recently, H. Swisher [15] employed the circle method to show that (i) lim n→∞ p0(n) p(n) = 1 2 , and that for sufficiently large n (ii) 2p0(n) > p(n), if n ≡ 0, 1 (mod 4), 2p0(n) < p(n), otherwise. In this paper we study the even/odd dissection of the Stanley product, and show how to use it to prove (i) and (ii) with no restriction on n. Moreover, we establish the following new result |p0(2n) − p2(2n)| > |p0(2n+ 1)− p2(2n+ 1)|, n > 0. Two proofs of this surprising inequality are given. The first one uses the Göllnitz-Gordon partition theorem. The second one is an immediate corollary of a new partition inequality, which we prove in a combinatorial manner. Our methods are elementary. We use only Jacobi’s triple product identity and some naive upper bound estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Combinatorial proof of a partition identity of Andrews and Stanley

In his paper, “On a Partition Function of Richard Stanley,” George Andrews proves a certain partition identity analytically and asks for a combinatorial proof. This paper provides the requested combinatorial proof.

متن کامل

The Partition Function of Andrews and Stanley and Al-Salam-Chihara Polynomials

For any partition λ let ω(λ) denote the four parameter weight ω(λ) = a P

متن کامل

On a Partition Function of Richard Stanley

In this paper, we examine partitions π classified according to the number r(π) of odd parts in π and s(π) the number of odd parts in π′, the conjugate of π. The generating function for such partitions is obtained when the parts of π are all 5 N . From this a variety of corollaries follow including a Ramanujan type congruence for Stanley’s partition function t(n).

متن کامل

On Stanley's Partition Function

Stanley defined a partition function t(n) as the number of partitions λ of n such that the number of odd parts of λ is congruent to the number of odd parts of the conjugate partition λ modulo 4. We show that t(n) equals the number of partitions of n with an even number of hooks of even length. We derive a closed-form formula for the generating function for the numbers p(n)− t(n). As a consequen...

متن کامل

Partition Identities I: Sandwich Theorems and Logical 0-1 Laws

The Sandwich Theorems proved in this paper give a new method to show that the partition function a(n) of a partition identity

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 112  شماره 

صفحات  -

تاریخ انتشار 2005